Structure Preserving Non-negative Feature Self-Representation for Unsupervised Feature Selection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Feature Selection by Preserving Stochastic Neighbors

Feature selection is an important technique for alleviating the curse of dimensionality. Unsupervised feature selection is more challenging than its supervised counterpart due to the lack of labels. In this paper, we present an effective method, Stochastic Neighborpreserving Feature Selection (SNFS), for selecting discriminative features in unsupervised setting. We employ the concept of stochas...

متن کامل

Feature Selection for Unsupervised Learning

In this paper, we identify two issues involved in developing an automated feature subset selection algorithm for unlabeled data: the need for finding the number of clusters in conjunction with feature selection, and the need for normalizing the bias of feature selection criteria with respect to dimension. We explore the feature selection problem and these issues through FSSEM (Feature Subset Se...

متن کامل

Unsupervised Feature Selection Using Feature Similarity

ÐIn this article, we describe an unsupervised feature selection algorithm suitable for data sets, large in both dimension and size. The method is based on measuring similarity between features whereby redundancy therein is removed. This does not need any search and, therefore, is fast. A new feature similarity measure, called maximum information compression index, is introduced. The algorithm i...

متن کامل

Embedded Unsupervised Feature Selection

Sparse learning has been proven to be a powerful technique in supervised feature selection, which allows to embed feature selection into the classification (or regression) problem. In recent years, increasing attention has been on applying spare learning in unsupervised feature selection. Due to the lack of label information, the vast majority of these algorithms usually generate cluster labels...

متن کامل

Unsupervised Personalized Feature Selection

Feature selection is effective in preparing high-dimensional data for a variety of learning tasks such as classification, clustering and anomaly detection. A vast majority of existing feature selection methods assume that all instances share some common patterns manifested in a subset of shared features. However, this assumption is not necessarily true in many domains where data instances could...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2017

ISSN: 2169-3536

DOI: 10.1109/access.2017.2699741